Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 75(5): 1058-1071, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34171437

RESUMO

BACKGROUND & AIMS: Current antiviral therapies control but rarely eliminate HBV, leaving chronic HBV carriers at risk of developing hepatocellular carcinoma (HCC). Lacking or dysfunctional virus-specific adaptive immunity prevents control of HBV and allows the virus to persist. Restoring antiviral T-cell immunity could lead to HBV elimination and cure of chronically infected patients. METHODS: We constructed bispecific T-cell engager antibodies that are designed to induce antiviral immunity through simultaneous binding of HBV envelope proteins (HBVenv) on infected hepatocytes and CD3 or CD28 on T cells. T-cell engager antibodies were employed in co-cultures with healthy donor lymphocytes and HBV-infected target cells. Activation of the T-cell response was determined by detection of pro-inflammatory cytokines, effector function (by cytotoxicity) and antiviral effects. To study in vivo efficacy, immune-deficient mice were transplanted with HBVenv-positive and -negative hepatoma cells. RESULTS: The 2 T-cell engager antibodies synergistically activated T cells to become polyfunctional effectors that in turn elicited potent antiviral effects by killing infected cells and in addition controlled HBV via non-cytolytic, cytokine-mediated antiviral mechanisms. In vivo in mice, the antibodies attracted T cells specifically to the tumors expressing HBVenv resulting in T-cell activation, tumor infiltration and reduction of tumor burden. CONCLUSION: This study demonstrates that the administration of HBVenv-targeting T-cell engager antibodies facilitates a robust T-cell redirection towards HBV-positive target cells and provides a feasible and promising approach for the treatment of chronic viral hepatitis and HBV-associated HCC. LAY SUMMARY: T-cell engager antibodies are an interesting, novel therapeutic tool to restore immunity in patients with chronic hepatitis B. As bispecific antibodies, they bind envelope proteins on the surface of the hepatitis B virus (HBV) and CD3 or CD28 on T cells. This way, they induce a potent antiviral and cytotoxic T-cell response that leads to the elimination of HBV-positive cells. These bispecific T-cell engager antibodies are exciting therapeutic candidates for chronic hepatitis B and HBV-associated hepatocellular carcinoma.


Assuntos
Antígenos da Hepatite B/sangue , Hepatite B/sangue , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Citometria de Fluxo/estatística & dados numéricos , Hepatite B/epidemiologia , Antígenos da Hepatite B/análise , Antígenos da Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Camundongos , Estatísticas não Paramétricas , Linfócitos T/fisiologia
2.
J Infect Dis ; 221(9): 1448-1461, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31875228

RESUMO

BACKGROUND: Chronic hepatitis B develops more frequently in countries with high prevalence of helminth infections. The crosstalk between these 2 major liver-residing pathogens, Schistosoma mansoni and hepatitis B virus (HBV), is barely understood. METHODS: We used state-of-the-art models for both acute and chronic HBV infection to study the pathogen-crosstalk during the different immune phases of schistosome infection. RESULTS: Although liver pathology caused by schistosome infection was not affected by either acute or chronic HBV infection, S mansoni infection influenced HBV infection outcomes in a phase-dependent manner. Interferon (IFN)-γ secreting, HBV- and schistosome-specific CD8 T cells acted in synergy to reduce HBV-induced pathology during the TH1 phase and chronic phase of schistosomiasis. Consequently, HBV was completely rescued in IFN-γ-deficient or in TH2 phase coinfected mice demonstrating the key role of this cytokine. It is interesting to note that secondary helminth infection on the basis of persistent (chronic) HBV infection increased HBV-specific T-cell frequency and resulted in suppression of virus replication but failed to fully restore T-cell function and eliminate HBV. CONCLUSIONS: Thus, schistosome-induced IFN-γ had a prominent antiviral effect that outcompeted immunosuppressive effects of TH2 cytokines, whereas HBV coinfection did not alter schistosome pathogenicity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepatite B Crônica/complicações , Hepatite B Crônica/imunologia , Esquistossomose mansoni/complicações , Esquistossomose mansoni/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Vírus da Hepatite B/fisiologia , Interferon gama/imunologia , Fígado/parasitologia , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Contagem de Ovos de Parasitas , Schistosoma mansoni , Células Th2/imunologia , Replicação Viral
3.
Cell Rep ; 28(1): 231-244.e5, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269443

RESUMO

Helicobacter pylori chronically colonizes the stomach and is strongly associated with gastric cancer. Its concomitant occurrence with helminths such as schistosomes has been linked to reduced cancer incidence, presumably due to suppression of H. pylori-associated pro-inflammatory responses. However, experimental evidence in support of such a causal link or the mutual interaction of both pathogens is lacking. We investigated the effects of co-infection during the different immune phases of S. mansoni infection. Surprisingly, co-infected mice had increased H. pylori gastric colonization during the interferon gamma (IFNγ) phase of schistosome infection but reduced infiltration of T cells in the stomach due to misdirection of antigen-experienced CXCR3+ T cells to the liver. Unexpectedly, H. pylori co-infection resulted in partial protection from schistosome-induced liver damage. Here, we demonstrate that an increase in fibrosis-protective IL-13Ra2 is associated with H. pylori infection. Thus, our study strongly points to an immunological interaction of anatomically isolated pathogens, eventually resulting in altered disease pathology.


Assuntos
Coinfecção/imunologia , Gastrite/microbiologia , Infecções por Helicobacter/imunologia , Helicobacter pylori , Cirrose Hepática/microbiologia , Cirrose Hepática/parasitologia , Esquistossomose mansoni/imunologia , Animais , Antígenos/imunologia , Células da Medula Óssea/metabolismo , Coinfecção/microbiologia , Coinfecção/parasitologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Gastrite/imunologia , Gastrite/metabolismo , Gastrite/parasitologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Humanos , Interferon gama/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/patologia , Estômago/imunologia , Estômago/microbiologia , Estômago/parasitologia , Estômago/patologia , Células Th1/imunologia , Células Th2/imunologia
4.
Eur J Immunol ; 47(5): 841-847, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28271497

RESUMO

Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into TH 1 cells, whereas TH 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting TH 2 and TH 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines.


Assuntos
Diferenciação Celular , Epigênese Genética , Ativação Linfocitária , Complicações Parasitárias na Gravidez/imunologia , Esquistossomose/imunologia , Linfócitos T/fisiologia , Acetilação , Animais , Doença Crônica , Citocinas/genética , Citocinas/imunologia , Feminino , Histonas/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Mães , Gravidez , Regiões Promotoras Genéticas , Esquistossomose/parasitologia , Linfócitos T/imunologia , Células Th1/imunologia , Células Th1/fisiologia , Células Th2/imunologia , Células Th2/fisiologia
5.
Nanomedicine (Lond) ; 11(9): 1153-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27074105

RESUMO

AIM: Currently there is no effective approach to enhance tendon repair, hence we aimed to identify a suitable cell source for tendon engineering utilizing an established clinically relevant animal model for tendon injury. MATERIALS & METHODS: We compared, by in-depth histomorphometric evaluation, the regenerative potential of uncommitted human mesenchymal stem cells (hMSC) and Scleraxis (Scx)-programmed tendon progenitors (hMSC-Scx) in the healing of a full-size of rat Achilles tendon defect. RESULTS: Our analyses clearly demonstrated that implantation of hMSC-Scx, in contrast to hMSC and empty defect, results in smaller diameters, negligible ectopic calcification and advanced cellular organization and matrix maturation in the injured tendons. CONCLUSION: Scaffold-free delivery of hMSC-Scx aids in enhanced repair in a clinically translatable Achilles tendon injury model.


Assuntos
Tendão do Calcâneo/patologia , Transplante de Células-Tronco Mesenquimais , Ruptura/terapia , Traumatismos dos Tendões/terapia , Animais , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais , Modelos Animais , Ratos , Regeneração , Ruptura/patologia , Traumatismos dos Tendões/patologia , Cicatrização
6.
PLoS Negl Trop Dis ; 7(8): e2379, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967364

RESUMO

The continual rise of asthma in industrialised countries stands in strong contrast to the situation in developing lands. According to the modified Hygiene Hypothesis, helminths play a major role in suppressing bystander immune responses to allergens, and both epidemiological and experimental studies suggest that the tropical parasitic trematode Schistosoma mansoni elicits such effects. The focus of this study was to investigate which developmental stages of schistosome infection confer suppression of allergic airway inflammation (AAI) using ovalbumin (OVA) as a model allergen. Moreover, we assessed the functional role and localization of infection-induced CD4(+)Foxp3(+) regulatory T cells (Treg) in mediating such suppressive effects. Therefore, AAI was elicited using OVA/adjuvant sensitizations with subsequent OVA aerosolic challenge and was induced during various stages of infection, as well as after successful anti-helminthic treatment with praziquantel. The role of Treg was determined by specifically depleting Treg in a genetically modified mouse model (DEREG) during schistosome infection. Alterations in AAI were determined by cell infiltration levels into the bronchial system, OVA-specific IgE and Th2 type responses, airway hyper-sensitivity and lung pathology. Our results demonstrate that schistosome infection leads to a suppression of OVA-induced AAI when mice are challenged during the patent phase of infection: production of eggs by fecund female worms. Moreover, this ameliorating effect does not persist after anti-helminthic treatment, and depletion of Treg reverts suppression, resulting in aggravated AAI responses. This is most likely due to a delayed reconstitution of Treg in infected-depleted animals which have strong ongoing immune responses. In summary, we conclude that schistosome-mediated suppression of AAI requires the presence of viable eggs and infection-driven Treg cells. These data provide evidence that helminth derived products could be incorporated into treatment strategies that specifically target suppression of immune responses in AAI by inducing Treg cells.


Assuntos
Asma/imunologia , Fatores de Transcrição Forkhead/análise , Tolerância Imunológica , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Linfócitos T Reguladores/imunologia , Alérgenos/imunologia , Animais , Asma/complicações , Asma/patologia , Modelos Animais de Doenças , Feminino , Imunoglobulina E/sangue , Pulmão/patologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Esquistossomose mansoni/complicações , Esquistossomose mansoni/patologia , Subpopulações de Linfócitos T/química , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...